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Math reminder for Electrochemists
II. The simplicity of Laplace transform

I Laplace transform

I.1 Introduction

Several electrochemical techniques use results
obtained using the Laplace transform. Exam-
ples can be found in Application notes AN#21,
AN#28, AN#38 and AN#41b [1–4].

I.2 Definitions

The Laplace (1) transform of a function f(t) is
defined by the integral

F (s) = L{f(t)} =
∫ ∞

0
f(t) exp(−st) dt (1)

where s is the Laplace complex variable [5].
For example the Laplace transform of the sine
function sin(t) is given by∫ ∞

0
sin(t) exp(−st) dt (2)

On the other hand the time function is given
by a more complicated expression from the
Laplace transform in the s-domain by

f(t) = L−1{F (s)} =

1
2π i

lim
T→∞

∫ γ+i T

γ−i T
exp(st) F (s) ds (3)

I.3 Table of Laplace transforms

Calculation of the integral of a function of a
real variable is sometimes easy, e.g. it is well
known that

∫
x dx = x2/2. Calculation of the

integral of a function of a complex variable is
much more difficult. Fortunately it is very rare

to have to use Eqs. (1) or (3). Laplace trans-
forms and inverse Laplace transforms usually
used in electrochemistry have already been
calculated. The result is obtained by consult-
ing a table of Laplace transform [5] (Tabs. I
and II), or better using a software such as
Wolfram|Alpha [6].

II Transfer function of a linear
and time invariant (LTI) sys-
tem

II.1 Definition

Laplace transform is the tool of choice for
the study of linear and time invariant system
(Fig. 1) characterized by their transfer function
H(s) defined by [7,8]

H(s) =
Y (s)
X(s)

=
L{y(t)}
L{x(t)}

(4)

LTI System
Input

xHtL

Output

y HtL

Fig. 1: Sketch of a scalar dynamic system.

For exemple, the impedance of a dipole is the
transfer function for a current input

Z(s) =
L{∆E(t)}
L{∆I(t)}

=
∆E(s)
∆I(s)

(5)

wit ∆E(t) = E(t) − Et=0 and ∆I(t) = I(t) −
It=0.

1 Pierre-Simon Laplace was a French mathematician
of the eighteenth century (1749-1827).
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III Response of a LTI system

III.1 Introduction

Knowing the transfer function of a system al-
lows us to calculate its response to an input.
For example, if Z(s) is known, it is possible
to determine the response of the dipole in the
Laplace domain

∆E(s) = ∆I(s) Z(s) (6)

then in the time domain using inverse Laplace
transform

∆E(t) = L−1{∆E(s)} (7)

III.2 Response of a parallel RC circuit
to a current Heaviside step func-
tion

III.2.1 Impedance of a parallel RC circuit

The impedance of a parallel RC circuit is di-
rectly written from the admittance Y (s) =
1/Z(s) [9]:

Y (s) =
1
R

+ sC ⇒ Z(s) =
R

1 + R C s
(8)

III.2.2 Response to a Heaviside step
function

The Heaviside step function is equal to 0 for t <
0 and 1 for t > 0 (Fig. 2). The Laplace trans-
form of the Heaviside step function is given by
(Tab. I, Eqs. (1) and (2))
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Fig. 2: Potential response of the parallel RC cir-
cuit to a Heaviside step current using Eq. (11).

∆I(s) = L{δI(t)} =
δI

s
(9)

The Laplace transform of the output is written

∆E(s) =
δI

s

R

1 + R C s
⇒ (10)

and the time domain response is given by
(Tab. II, Eqs. (1) and (2)):

∆E(t) = L−1{∆E(s)} = L−1

{
δI

s

R

1 + R C s

}
= δIR (1 − exp (−t/(CR))) (11)

III.2.3 Response to a sinusoidal input

The Laplace transform of a sinusoidal signal is
given by (Tab. I, Eqs. (1) and (4))

I(t) = δI sin(ωt) ⇒ I(s) = L{δI(t)} =
δI ω

s2 + ω2

(12)
Therefore the output potential in the Laplace
domain is

∆E(s) =
δI ω

s2 + ω2

R

1 + R C s
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and the time domain response is given by
(Tab. II, Eqs. (1) and (4))

∆E(t) = L−1{∆E(s)} = L−1

{
δI ω

s2 + ω2

R

1 + τ s

}
=

δI R (τ ω exp(−t/τ) − τω cos(ω t) + sin(ω t))
1 + τ2ω2

(13)

with τ = R C. The establishment of the si-
nusoidal steady-state of potential is shown in
Fig. 3.
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Fig. 3: Potential response of the parallel RC cir-
cuit to a sinusoidal current using Eq. (13).

III.3 Ramp response of a series RC
circuit

III.3.1 Impedance of a series RC circuit

The impedance of a series RC circuit is given
by

Z(s) = R +
1

C s
(14)

III.3.2 Response to a potential ramp

The signal used in linear sweep voltammetry is
a potential ramp defined as:

E(t) = Ei + v t ⇒ ∆E(t) = E(t) − Ei = v t
(15)

The Laplace transform of a ramp is given by
(Tab. I, Eqs. (1) and (3))

∆E(s) = L{∆E(t)} = L{v t} =
v

s2
(16)

With

Z(s) =
∆E(s)
∆I(s)

⇒ ∆I(s) =
∆E(s)
Z(s)

it is obtained

∆I(t) = L−1{∆I(s)} = L−1

{
C v

s(1 + C Rs)

}
and, using Eqs. (1) and (2) (Tab. II),

∆I(t) = I(t) = C v (1 − exp(−t/(R C))) (17)
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Fig. 4: Current response of the serie RC circuit
to a ramp of potential calculated using Eq. (17).
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IV Laplace and inverse Laplace
transforms tables

IV.1 Laplace transforms

Laplace transforms used in this note are shown
in Tab. I.

Tab. I: Table of Laplace transforms.

f(t) F (s)

(1) a f(t) aF (s)

(2) 1
1
s

(3) t
1
s2

(4) sin(ω t)
ω

s2 + ω2

IV.2 inverse Laplace transforms

Inverse Laplace transforms used in this note
are shown in Tab. II.
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Tab. II: Table of inverse Laplace transforms.

F (s) f(t)

(1) aF (s) a f(t)

(2)
1

s(1 + as)
1 − exp(−t/a)

(3)
1

s2(1 + as)
a (exp(−t/a) − 1) + t

(4)
1

(1 + as) (1 + bs2)
a exp(−t/a) − a cos

(
t/
√

b
)

+
√

b sin
(
t/
√

b
)

a2 + b
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