How to fit transmission lines with ZFit

I – INTRODUCTION
ZFit is the impedance fitting tool of EC-Lab®. This note will describe how to fit transmission lines using one equivalent circuit elements contained in ZFit.

It has been well known for a long time that the Warburg impedance is equivalent to that of a semi-infinite large network i.e. a transmission line, as shown in Fig. 1 [1, 2].

![Figure 1: The equivalent circuit of the War-Burg impedance.](image)

More recently it has been shown [3] that the impedance of a L-long transmission line made of \(\chi \) and \(\zeta \) elements and terminated by a \(Z_L \) element (Fig. 2) is given by the general expression:

\[
Z = \frac{(\zeta\chi - Z_L^2) \text{sh} \left(\frac{L\sqrt{\chi}}{\sqrt{\zeta}} \right)}{Z_L \text{sh} \left(\frac{L\sqrt{\chi}}{\sqrt{\zeta}} \right) + \sqrt{\zeta\chi} \text{ch} \left(\frac{L\sqrt{\chi}}{\sqrt{\zeta}} \right)} + Z_L
\]

Hereafter, some transmission lines are described and the corresponding "simple" equivalent circuit elements are shown. Firstly, the open-circuited transmission lines will be explained, followed by short-circuited and semi-infinite transmission lines.

III – OPEN-CIRCUITED TRANSMISSION LINES \(Z_L = 1 \)

II - 1 OPEN-CIRCUITED URC (UNIFORM DISTRIBUTED RC)
Let us consider the open-circuited transmission line made of \(r \) and \(c \) elements (Fig. 3).

![Figure 3: L-long open uniform distributed RC (URC) transmission line [4,5].](image)

With three limiting cases
- open-circuited transmission line

\[
Z_L = \infty \Rightarrow Z = \sqrt{\zeta\chi} \coth \left(\frac{L\sqrt{\chi}}{\sqrt{\zeta}} \right)
\]

(1)

- short-circuited transmission line

\[
Z_L = 0 \Rightarrow Z = \sqrt{\zeta\chi} \tanh \left(\frac{L\sqrt{\chi}}{\sqrt{\zeta}} \right)
\]

(2)

- semi-infinite transmission line

\[
L \rightarrow \infty \Rightarrow Z = \sqrt{\zeta\chi}
\]

(3)

\[1\] The transmission lines are named accordingly to the U-\(\chi \zeta \) format where \(U \) means uniformly distributed and \(\chi \) and \(\zeta \) are the elements of the transmission line.
Using Eq. (1), the transmission line impedance is given by:

\[Z = \sqrt{r} \frac{\coth(L\sqrt{rc\omega})}{\sqrt{cj\omega}} \]

(4)

With \(\omega = 2\pi f \). This impedance is similar to that of the M element of ZFit.

\[Z_M = R_d \frac{\coth(L_d \sqrt{r_d j\omega})}{\sqrt{r_d j\omega}} \]

(5)

II - 2 OPEN-CIRCUITED URQ

Replacing c elements by q elements, with \(Z_q = \frac{1}{q(j\omega)^a} \) leads to transmission line shown in Fig. 4.

![Figure 4: L-long open uniform distributed RQ|(URQ) transmission line.](image)

The transmission line impedance is given by

\[Z = \sqrt{r} \frac{\coth(L\sqrt{r q j\omega})^{a/2}}{\sqrt{q(j\omega)^{a/2}}} \]

(6)

The impedance is similar to that of the M\(_a\) element of ZFit.

\[Z_{M_a} = R \frac{\coth(\tau j\omega)^{a/2}}{(\tau j\omega)^{a/2}} \]

(7)

With \(R = Lr, \tau = (L^2 r q)^{1/a} \)

As an example a Nyquist impedance diagram of a battery Ni-MH 1900 mAh is shown in Fig. 5. The equivalent circuit \(R1+L1+Q1/(R2+Ma3) \), containing a M\(_a\) element, is chosen to fit the data shown in Fig. 5. The values of the parameters, obtained using the ZFit tool of EC-Lab, are \(R1 = 0.049 \ \Omega, \ L1 = 0.154 \ \times 10^{-6} \ \text{H}, \ Q1 = 0.66 \ \text{F}, \ a1 = 0.61, \ R2 = 0.0236 \ \Omega, \ R3 = Lr = 0.057 \ \Omega, \ \tau3 = (L^2 r q)^{1/a} = 2.25 \ \text{s} \) and \(a3 = 0.89 \).

![Figure 5: Nyquist impedance diagram of a battery Ni-MH 1900 mAh.](image)

The equivalent circuit of the so-called anomalous diffusion is shown in Fig. 6 [6].

![Figure 6: L-long open uniform distributed QC (UQC) transmission line. Anomalous diffusion [6].](image)

The anomalous diffusion impedance is given by
\[X = \frac{1}{q(j\omega)}^{\gamma} \zeta = \frac{1}{c j\omega} \]

\[
\coth \left(L \sqrt{\frac{c}{q}} \frac{1}{2} j\omega \right) \frac{1}{2} \]

\[Z = \frac{\sqrt{cz}}{\sqrt{c q}} \left(\frac{1}{2} j\omega \right) \]

This impedance is similar to that of the M_{\theta} element of ZFit

\[Z_{M_{\theta}} = R \frac{\coth \left(\frac{1}{2} \frac{c}{j\omega} \right)}{\left(\frac{1}{2} \frac{c}{j\omega} \right)} \]

(9)

With \(\gamma = 1 - \alpha \), \(R = c^\gamma \frac{L'}{q} \), \(\tau = c^\gamma \frac{L'}{q} \).

III – SHORT-CIRCUITED TRANSMISSION LINES \(Z_l = 0 \)

III - 1 SHORT-CIRCUITED URC

Figure 7: L-long open uniform distributed QC (UQC) transmission line. Anomalous diffusion [6].

Using Eq. (2), the impedance of the short-circuited transmission line made of \(r \) and \(c \) elements (Fig. 7) is given by

\[X = r, \zeta = \frac{1}{c j\omega} \]

\[Z = \frac{\theta \left(L \sqrt{c_{j\omega}} \right)}{R \sqrt{c_{j\omega}}} \]

(10)

This impedance is similar to that of the \(W_d \) element of ZFit

\[Z_{W_d} = R \frac{\theta \left(\frac{1}{2} \frac{c_{j\omega}}{j\omega} \right)}{\sqrt{c_{j\omega}}} \]

\(R_d = L r, \tau_d = L' r c \)

(11)

IV – SEMI-INFINITE TRANSMISSION LINES: \(L \rightarrow \infty \)

IV - 1 SEMI-INFINITE URC

The impedance of the semi-infinite transmission line shown in Fig. 1 is obtained making \(L \rightarrow \infty \) in Eq. (10).

\[L \rightarrow \infty \Rightarrow Z = \frac{\theta \left(L \sqrt{c_{j\omega}} \right)}{R \sqrt{c_{j\omega}}} \approx \frac{\sqrt{r}}{\sqrt{c_{j\omega}}} \]

(12)

This expression is similar to that of the Warburg (W) element of ZFit

\[Z_w = \frac{2\sigma}{\sqrt{j\omega}} \text{ with } \sigma = \frac{\sqrt{r}}{2c} \]

(13)

As an example a Nyquist impedance diagram of a Fe(II)/Fe(III) system is shown in Fig. 8.

Figure 8: Nyquist impedance diagram of a Fe(II)/Fe(III) system in basic medium.

The Randles circuit \(R_1 + Q_2 / (R_2 + W_2) \), containing a Warburg element, is chosen to fit the data shown in Fig. 8. The values of the parameters for equivalent circuit are \(R_1 = 47.57 \Omega, Q_2 = 17.09 \times 10^{-6} \text{ F s}^{-1}, \alpha = 0.885, R_2 = 70.94 \Omega \) and \(\sigma_2 = 85.33 \Omega \text{ s}^{-1/2} \)

\[\Rightarrow \sqrt{c} = 42.7 \Omega \text{ s}^{-1/2} \]

IV - 2 SEMI-INFINITE URRC

First of all, let us calculate the impedance of the L-long URRC transmission line (Fig. 9)
corresponding to diffusion-reaction and diffusion-trapping impedance [7]:

\[\chi = r_1, \zeta = \frac{r_2}{1 + r_2c(j\omega)} \]

\[\Rightarrow Z = \sqrt{r_1r_2} \left(\frac{L}{r_2} \left(1 + r_2c(j\omega) \right) \right) \left(\frac{1}{\sqrt{1 + r_2c(j\omega)}} \right) \]

(14)

Replacing c elements by q elements

\[\chi = r_1, \zeta = \frac{r_2}{1 + r_2c(j\omega)^{\alpha}} \]

\[\Rightarrow Z = \sqrt{r_1r_2} \frac{th \left(L \sqrt{r_1r_2} \left(1 + r_2c(j\omega)^{\alpha} \right) \right)}{\sqrt{1 + r_2c(j\omega)^{\alpha}}} \]

(17)

This expression is similar to that of the G\text{a} element of ZFit

\[Z_{G\text{a}} = \frac{R}{\sqrt{1 + \tau(j\omega)^{\alpha}}}, R = \sqrt{r_1r_2}, \tau = r_2q \]

(19)

V – CONCLUSION

Seven elements, W, Wd, M, Ma, Mg, G and Ga, available in ZFit correspond to different transmission lines (Tabs. I and II).

Table I: Summary table.

<table>
<thead>
<tr>
<th>Transmission line</th>
<th>ZFit Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Circuited</td>
<td>URC</td>
</tr>
<tr>
<td>URC</td>
<td>M</td>
</tr>
<tr>
<td>URCQ</td>
<td>Ma</td>
</tr>
<tr>
<td>UQC</td>
<td>Mg</td>
</tr>
<tr>
<td>Short circuited</td>
<td>URC</td>
</tr>
<tr>
<td>URC</td>
<td>W</td>
</tr>
<tr>
<td>URCQ</td>
<td>G</td>
</tr>
<tr>
<td>URRQ</td>
<td>Ga</td>
</tr>
<tr>
<td>Semi-infinite</td>
<td>URC</td>
</tr>
<tr>
<td>URCQ</td>
<td>W</td>
</tr>
<tr>
<td>URRQ</td>
<td>G</td>
</tr>
<tr>
<td>Data files can be found in:</td>
<td></td>
</tr>
<tr>
<td>C: \Users\xxx\Documents\EC-Lab\Data\Samples\EIS\PEIS_Fe_Basique_1</td>
<td></td>
</tr>
</tbody>
</table>
and

<table>
<thead>
<tr>
<th>ZFit Element</th>
<th>Equations</th>
<th>Transmission Line</th>
</tr>
</thead>
</table>
| M | $R_a = \frac{\text{coth}(\sqrt{\tau_a}j\omega)}{\sqrt{\tau_a}j\omega}$ | ![Transmission Line Diagram](image1)
| | $R_a = L \tau, \tau_a = L^2 \tau c$ | |
| M_a | $R = \frac{\text{coth}(\tau j\omega)\alpha/2}{(\tau j\omega)^{\alpha/2}} \frac{R = L \tau}{\tau = (L^2 \tau q)^{1/\alpha}}$ | ![Transmission Line Diagram](image2)
| M_g | $R = \frac{\text{coth}(\tau j\omega)\gamma/2}{(\tau j\omega)^{\gamma/2}} \frac{R = L^2 \gamma^{-1}q^{-1}/\gamma}{\tau = \gamma^{-1}L^2 q^{-1}/\gamma}$ | ![Transmission Line Diagram](image3)
| W_d | $R_a = \frac{\text{th}(\sqrt{\tau_a}j\omega)}{\sqrt{\tau_a}j\omega}$ | ![Transmission Line Diagram](image4)
| | $R_a = L \tau, \tau_a = L^2 \tau c$ | |
| W | $\sigma = \frac{2\sigma}{\sqrt{3} \omega}$ | ![Transmission Line Diagram](image5)
| G | $R_G = \frac{\sqrt{1 + \tau_G j\omega}}{\sqrt{1 + \tau_G j\omega}} \frac{R_G = \sqrt{\tau_1 \tau_2}}{\tau_G = \tau_2 c}$ | ![Transmission Line Diagram](image6)
| G_B | $R_G = \frac{\sqrt{1 + G_B (j\omega)^2}}{\sqrt{1 + G_B (j\omega)^2}} \frac{R_G = \sqrt{\tau_1 \tau_2}}{\tau_G = \tau_2 q}$ | ![Transmission Line Diagram](image7)

Table II: ZFit elements vs. transmission lines

References

Revised in 11/2018