The purpose of the application notes is two-folded: i) to introduce or illustrate new features: technique, analysis tool (for example CASP, DCS, MIRA, ic-SECM, EKKO…), ii) to show how our instruments and software can be used within a specific application (photovoltaic materials, supercapacitors, batteries, proteins…) and which information can be obtained. The application notes are sorted by divisions.

## Application notes

The main subjects covered are: electrochemical impedance spectroscopy, battery investigation, analytical electrochemistry, corrosion and energy.

AN#1 – Protocols for studying intercalation electrodes materials: Part I: Galvanostatic cycling with potential limitation (GCPL)

AN#2 – Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA)

AN#3 – Galvanostatic Cycling with Potential limitation 4: Low Earth Orbit battery satellite protocol

AN#4 – Potentiostat stability mystery explained

AN#5 – Precautions for good impedance measurements

AN#6 – Constant power technique

AN#7 – Application of the bipotentiostat to an experiment with a rotating ring-disk electrode.

AN#8 – Impedance, admittance, Nyquist, Bode, Black, etc…

AN#9 – Linear vs. non linear systems in impedance measurements

AN#10 – Corrosion current measurement for an iron electrode in an acid solution

AN#11 – Calculation of the platinum’s active surface

AN#12 – UV-Visible Spectroscopy and Electrochemistry coupling: Spectroelectrochemical experiment feasibility on a polypyrrol film

AN#13 – VMP3 and Quartz Crystal Microbalance coupling: mass measurement during a polypyrrol film deposition

AN#14 – ZFit and equivalent electrical circuits

AN#15 – Two questions about Kramers-Kronig transformations

AN#16 – Simultaneous Impedance measurements on each element of a running cell stack

AN#17 – Drift correction in electrochemical impedance measurements

AN#18 – Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis

AN#19 – EIS measurements with multisine

AN#20 – Pseudo capacitance calculation

AN#21 – Measurements of the double layer capacitance

AN#22 – Corrosion of reinforced concrete

AN#23 – EIS measurements on Li-ion batteries-EC-Lab software parameters adjustment

AN#24 – Photovoltaic Characterizations: Polarization and Mott Schottky plot

AN#25 – Multi Pitting Corrosion

AN#26 – Graphic Customization

AN#27 – Ohmic Drop: Part I: Effect on measurements

AN#28 – Ohmic Drop: Part II: Introduction to Ohmic Drop measurement techniques

AN#29 – Ohmic Drop Part III: Suitable use of the ZIR techniques?

AN#30 – IMVS investigation on photovoltaic cell

AN#31 – Fuel Cell Testing-Part I: Overview and I/E characterizations

AN#32 – Fuel Cell Testing-Part II: EIS characterization

AN#33 – Supercapacitors investigations-Part I: Charge/discharge cycling

AN#34 – Supercapacitors investigations-Part II: Time constant determination

AN#35 – Application of the Capacitance-Voltage curve to photovoltaic cell characterizations

AN#36 – VASP: An innovative and exclusive technique for corrosion monitoring

AN#37 – CASP: a new method for the determination of corrosion parameters

AN#38 – Dynamic resistance determination. A relation between AC and DC measurements?

AN#39-I – Electrochemical Noise Measurements-Part I : ASTM assessment and validation of the instrumental noise

AN#39-II – Electrochemical Noise Measurements-Part II : ASTM assessment and validation on a real electrochemical system

AN#39-III – Electrochemical Noise Measurements-Part III : Determination of the noise resistance Rn

AN#40 – Differential (Incremental) Capacity Analysis

AN#41-I – CV Sim-Simulation of the simple redox reaction (E)-Part I : The effect of the scan rate

AN#41-II – CV Sim-Simulation of the simple redox reaction (E)-Part II : The effect of the ohmic drop and the double layer capacitance

AN#42 – ZFit : The modified inductance element La.

AN#43 – How to fit transmission lines with ZFit

AN#44 – Artefacts in EIS measurements

AN#45 – Using ZFit for multiple cycles analysis

AN#46 – Dilatometer

AN#47 – Corrosion current determination with mass transfer limitation

AN#48 – Inaccuracy of the corrosion current determination in presence of an ohmic drop: EC-Lab® solutions

AN#49 – EIS measurements: Potentio (PEIS) vs. Galvano (GEIS) mode, that is the question!

AN#50-I – Math Reminder for electrochemists: I. The simplicity of complex number and impedance diagrams

AN#50-II – Math Reminder for electrochemists: II. The simplicity of Laplace transform

AN#51 – Supercapacitor characterization by galvanostatic polarization method

AN#52 – UFS-SEC: the spectroElectrochemical Cell for UV-Vis, NIR and IR measurement

AN#53 – Precision and Accuracy in Coulombic Efficiency Measurements. Sample data (*.mpr* 16 Mo).

AN#54 – How to read EIS accuracy contour plots

AN#55 – Interpretation problems of impedance measurements made on time variant systems

AN#56 – Electrochemical reaction kinetics measurement: the Levich and Koutecký-Levich analysis tools

AN#57 – Differential Coulometry Spectroscopy (DCS)

AN#58 – Cycling battery with reference electrode by using the PAT-cell test cell

AN#59 – A full solution to address battery module/pack.

AN#60 – Distribution of Relaxation Times (DRT): an introduction

AN#61 – How to interpret lower frequencies impedance in batteries ?

AN#62 – How to measure the internal resistance of a battery using EIS ?

AN#63 – High current (DC and EIS) measurements on electrolyzer ?

AN#64 – Introducing EC-Lab® EIS quality indicators: THD, NSD and NSR.

AN#65 – THD: parameters affecting its value and comparison with other methods of linearity assessment.

AN#66 – EIS measurements on a Rotating Disk Electrode (RDE) – Part I: Determination of a diffusion coefficient using the new element Winf

The application notes are here giving tips and results about how to use the techniques such as Scanning Electrochemical Spectroscopy in dc, ac and ic mode, Scanning Kelvin Probe and some various aspects of the software.

AN#1 – Height tracking with the SKP370 or SKP470 module

AN#2 – SECM height relief with OSP: An application in corrosion

AN#3 – SECM height relief with OSP: an application in sensors

AN#4 – Post-treatment and optimization of area scan experiments

AN#5 – Introducing the Microscopic Image Rapid Analysis (MIRA) software

AN#6 – Advantages of the intermittent contact SECM : two examples in corrosion

AN#7 – ac-SECM to investigate battery electrode materials in non-aqueous electrolyte

AN#8 – Graphical and analysis tools in M370/M470 software

AN#9 – SKP imaging example of a corroded Zn-plated Fe sample

AN#10 – dc- and ac-SECM Measurements on Si Nanowire Arrays

AN#11 – Measurement of a nano-patterned gold sample by ic-/ac-SECM

AN#12 – 3D Map production using the 3DIsoPlot software

AN#13 – Investigation of an interdigitated array electrode using ic-SECM

AN#14 – Introduction to the Modular Map Experiment: an Interdigitated Array electrode example

AN#15 – Introduction to the USB-PIO: measuring the effect of light on a live leaf

AN#16 – Intermittent Contact (ic) SECM for relief of major topographic features

AN#17 – The use of height tracking SECM to measure mechanically exfoliated graphite

AN#18 – Achieving micron scale measurements using the SECM150

AN#19 – Investigation of the diffusion of ferricyanide through porous membranes using the SECM150

AN#20 – Introduction to Foil Cell

AN#21 – Using the SECM150 to Measure an NMC Battery Electrode

AN#11 – MOS-500 – ORD accessory

AN#15 – SFM-2000 series – Submicrosecond dead time determination

AN#16 – SFM-2000 series – High precision volume delivery

AN#17 – SFM-2000 series – Precise control of flow rate

AN#18 – SFM-2000 series – High precision mixing ratios

AN#19 – SFM-2000 series – Automatic concentration dependance studies

AN#20 – SFM-2000 series – Wide temperature range control

AN#21 – SFM-2000 series – Double mixing stopped-flow using interrupted flow method

AN#22 – MOS-500 – Using MOS-500 for Magnetic Circular Dichroism

AN#23 – MOS-500 – DR-CD accessory for the determination of enantiomeric ratio

AN#24 – MOS-500 – Exciton coupled circular dichroism using MOS-500

AN#25 – SFM-2000 series – Stopped-flow in cryogenic conditions

AN#26 – MOS-500 – Changing the way to do Circular Dichroism

AN#27 – μSFM – Getting the most from a 50 μl stock of sample using the μSFM for refolding experiments

AN#28 – EkkO – Meniscus and beam position effects on measurement stability

AN#29 – EkkO – Evaporation Effects on Measurement Stability