

I-Introduction

Bio**Loaic**

All electrochemical processes take place at the electrode/electrolyte interface, *i.e.* the electrical double layer (Fig. 1). Different models of this layer were stated by Helmholtz, Gouy-Chapman, Stern, or Grahame [1,2].

Fig. 1: Scheme of the electrical double layer according to the Grahame model (adapted from [2]). IHP: Inner Helmholtz Plane, OHP: Outer Helmholtz Plane. A: Electrode with an excess of negative charge; B: Localization of the charge in excess; C: Potential change versus distance towards the electrode/electrolyte interface.

The structure of the double layer is similar to an electrical condenser constituted by two charged areas separated by a dielectric. The dielectric thickness corresponds to the ionic radius, *i.e.* 50 nm.

In this note, the electrical double layer of the iron electrode in acidic conditions is investigated. In this purpose, two techniques are used to determine the value of the capacitance: the Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV).

II- Experimental conditions

Investigations are performed by the VSP instrument driven by EC-Lab[®] software in a solution of HCI (0.1 M). The three-electrode set-up is used with:

- a Rotating Disk Electrode (RDE) of iron as a working electrode with a surface area of 3.14 mm^2 ,
- a platinum wire as a counter electrode,
- and a Saturated Calomel Electrode (SCE) as a reference electrode.

For both techniques, experiments are carried out at the rotation speed of the electrode: $\Omega = 800$ rpm (rotations per minute). For the CV experiment, the scan rate is 40 mV.s⁻¹.

Data analysis for both techniques is also computed by EC-Lab[®] software.

III- Impedance theory

The equivalent circuit, described in Fig. 2, with a capacitance and a resistance in parallel and an additional resistance corresponding to the ohmic drop (R_1+C/R_2) should be a good model for the double layer. In this case, the resulting Nyquist diagram is close to a perfect semicircle (Fig. 2). However, for real systems, it is hardly ever the case. That's why, a constant phase element (CPE), noted Q in Fig. 3, is introduced and used instead of the capacitance *C* in the R_1+Q/R_2 equivalent circuit [3,4]. Then, the resulting Nyquist diagram (Fig. 3) corresponds to a depressed semi-circle in its upper-part.

Fig. 2: Equivalent electrical circuit R_{Ω} +R/C (top) and corresponding Nyquist impedance diagram (bottom, arrow indicates increasing angular frequencies).

Fig. 3: Equivalent electrical circuit R_{Ω} +R/Q (top) and corresponding Nyquist impedance diagram (bottom, arrow indicates increasing angular frequencies).

Then, the analogy between the relationship described in Fig. 1 and 3 leads to Eq. 1. This equation gives the capacitance value at the frequency corresponding to the apex of the Nyquist diagram.

$$C_{dl} = Q(\omega_c)^{\alpha - 1}$$
 (

1)

IV- Impedance results and analysis

The measurements are carried out with potentiostatic EIS (PEIS) techniques at open circuit voltage E_{oc} in the 100 kHz – 100 mHz frequency range and with a sinus amplitude (V_a) of 10 mV. The settings of the impedance investigation are shown in Fig. 4.

Mode Single Sine			
Set Ewe to E = 0.000 0 V vs. Eoc ✓ for t = 0 h mn 0.000 s Record every dl = 0.000 mA ✓ or dt = 0.000 s			
$\label{eq:second} \begin{array}{c c} \underline{Scan} \mbox{ from } \mathbf{f}_i = 100.000 \mbox{ kHz } \\ \mbox{ to } \mathbf{f}_f = 100.000 \mbox{ mHz } \\ \hline \mbox{ to } \mathbf{N}_d = [3] \mbox{ points per decade } \\ \hline \mbox{ or } \mathbf{N}_d = [51] \mbox{ points from } \mathbf{f}_i \mbox{ to } \mathbf{f}_f \\ \mbox{ in } \begin{bmatrix} \mbox{ or } \mathbf{N}_d = [51] \mbox{ points from } \mathbf{f}_i \mbox{ to } \mathbf{f}_f \\ \mbox{ in } \begin{bmatrix} \mbox{ or } \mathbf{N}_d = [51] \mbox{ points from } \mathbf{f}_i \mbox{ to } \mathbf{f}_f \\ \mbox{ in } \begin{bmatrix} \mbox{ or } \mathbf{N}_d = [51] \mbox{ points from } \mathbf{f}_i \mbox{ to } \mathbf{f}_f \\ \mbox{ constraints in } \end{bmatrix} \\ \begin{array}{c} \mbox{ show frequencies } >> \\ \mbox{ constraints and plitude } \mathbf{V}_a = [10.0 \mbox{ mV} \mbox{ (Vrms } ~ 7.07 \mbox{ mV}) \\ \mbox{ wait for } \mathbf{p}_w = [0.00 \mbox{ period before each frequency } \\ \mbox{ average } \mathbf{N}_a = [1] \mbox{ measure(s) per frequency } \\ \mbox{ drift correction } \\ \mbox{ Repeat } \mathbf{n}_c = [0] \mbox{ time(s)} \end{array} $			
E Range = -10 V; 10 V V <i>Resolution = 305 18 µV</i> I Range = Auto Bandwidth = 5 · medium V (~ 55 s / scan)			
Go back to seq. $N_{s'} = 0$ /9999 ends technique/ for $n_f = 0$ time(s) /0/kor next sequence/ increment cycle number			

Fig. 4: Potentiostatic Impedance "Parameters Settings" window.

Points of the impedance diagram corresponding to lowest frequencies $(\text{Re}(Z) \ge 55 \text{ k}\Omega)$ clearly show that the system drifts with time, because of the non-stationary condition. Therefore, these points are not taken into consideration (Fig. 5).

As explained above, the fit is performed with the R₁+R₂/Q equivalent circuit (Fig. 6). First of all, the results show that the ohmic drop resistance ($R_1 = R_{\Omega} = 71 \Omega$) is insignificant before the charge transfer resistance ($R_2 = R_t = 58 \text{ k}\Omega$). And the value of Q is 6.3 µF.s^{α-1} with α equal to 0.84. Then, the capacitance of the system is computed with the "Pseudocapacitance" tool and the value of 5.2 μ F is determined for C_{dl} (Fig. 6) [4].

It is possible to load the settings and the data files as PEIS_CPE.mpr in the EC-Lab[®] Samples folder.

Fig. 5: Experimental (blue markers) and fitted (red curve) impedance diagram.

Fig. 6: The "Zfit" and "Pseudocapacitance" results.

V- Cyclic voltammetry results and analysis

 E_{oc} is determined before starting the CV experiment. The value is -0.235 V vs. SCE. The parameters of the CV technique (Fig. 7)

are chosen accordingly, *i.e.* in a range of $\pm 15 \text{ mV}$ around E_{oc} with a scan rate of 40 mV.s⁻¹.

<u>Set E_{we} to E_i =</u>	-0.250 V vs. Ref 🗸			
<u>Scan E_{we} with dE/dt =</u>	40 mV/s			
to vertex potential E ₁ =	-0.220 V vs. Ref 💌			
<u>Reverse scan</u> to vertex E ₂ =	-0.250 V vs. Ref 💌			
<u>Repeat</u> n _c =	0 time(s)			
Measure <i> over the last</i>	100 % of the step duration			
$\underline{\text{Record $	4 voltage steps			
E Range =	-2.5V; 2.5V 🔽 🛄			
	Resolution = 100 µV			
I Range =	100 μΑ 🗸 🗸			
Bandwidth = 5 - medium 🗸				
<u>End scan</u> to Ef =	0.000 V vs. Ref 💌			

Fig. 7: Cyclic Voltammetry "Parameters Settings" window.

As the ohmic drop can be neglected (see previous paragraph), the value of R_{p} can be determined by calculating the slope of the curve. The $R_{\rm p}$ values found for forward (Fig. 8) and backward sweeps of the potential are $(= 1/17.673 \times 10^{-6})$ and 57 kΩ 61 kΩ respectively. Note that the values $R_{\rm p}$ determined by PEIS or CV techniques are in agreement. As the transport of the material does not limit the kinetics of the redox process, the following Eq. 2 is true [2]:

$$R_{\rm p} = R_{\rm t} \tag{2}$$

Assuming our system could be modeled by a real capacitance and a resistance in parallel; we can calculate the equations corresponding to the upper and lower part of the curve around the corrosion potential which is equal to $E_{\rm oc}$. From these equations, we extrapolated the two current values $I_{\rm a}$ and $I_{\rm c}$ corresponding to the corrosion potential for the anodic and the cathodic part of the curve, respectively, and were able to calculate the double layer capacitance with the following equation:

$$\frac{I_{\rm a}-I_{\rm c}}{2} = C_{\rm dl} \frac{\mathrm{d}E}{\mathrm{d}t} \tag{3}$$

Finally, considering the values given in Fig. 8 and Eq. 3, the capacitance, C_{dl} , is 4.3 μ F.

It is possible to load the settings and the data files as CV_CPE.mpr in the EC-Lab[®] Samples folder.

Fig. 8: Steady-state curve *I vs.* E_{WE} for forward and backward voltage scan (top). "Line Fit" tool for determining R_p (bottom).

By the way, it is possible to simulate the CV response of a circuit R/Q (Fig. 3). For that purpose, the relationship Eq. (4), in which the current response of a CPE is corresponds to a linear change of potential, is used:

$$I_{\rm Q}(t) = L^{-1} \left[\frac{v_{\rm b}}{s^2} \frac{1}{{\rm Q}s^{\alpha}} \right] = \frac{v_{\rm b}t^{1+\alpha}}{{\rm Q}\Gamma(2+\alpha)} \tag{4}$$

where $v_{\rm b}$ is the scan rate of the electrode potential, Γ the Euler gamma function, and *s* the Laplace variable.

Results of the simulation are shown in Fig. 9, using parameter values measured from EIS data. Measuring I_{a} , I_{c} and using Eq. (3) leads

to $C_{dl} = 5.2 \times 10^{-6}$ F which corresponds to the value measured from EIS data.

Fig. 9: Simulation of the CV response of circuit R+R/Q (Fig. 3) plotted by Mathematica software.

VI- Conclusion

Capacitance values determined by both techniques (EIS and CV) are summarized in Table 1. The magnitude of the capacitance ($\sim 5 \ \mu F$) is the same.

However, in the case of the data obtained from CV investigation, the hypothesis of a true capacitance is assumed. But regarding the impedance result, this assumption is not verified and may explain the difference between the capacitance values.

Table 1: Summary

	Impedance	CV	
	(CPE hypothesis)	measured	simulated (CPE hypothesis)
C _{dl} /µF	5.2	4.3	5.2

References

[1] Electrochemical methods. Fundamentals and applications, A. J. Bard, L. R. Faulkner, ed. Wiley (Hoboken), 2001.

[2] Cinétique électrochimique, J.-P. Diard, B. Le Gorrec, C. Montella, ed., Hermann (Paris) 1996.

[3] Impedance Spectroscopy. Theory, experiment and applications. E. Barsoukov, J.R. Macdonald, ed. Wiley (Hoboken), 1987.

[4] Application Note #20, <u>http://www.bio-logic.info/potentiostat/notes.html</u>